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In our previous paper(l) we presented the results of quan- 

titative estimates of coaling and bending processes for charged 

particle penetrations through a monocrystal. We have been asked 

the details of these estimates, and we present them below. 

A. Cooling a beam by a crystal 

Let us consider a two-dimensional motion of a high energy 

particle in a 

(see Fig. 1). 
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plane of two rows of atams in a crystal lattice 

Let us designate: 

frequency of oscillation of a particle; w = l/T, 

where T is a period of oscillation, 

mass of a lattice atom. 

distance between. consecutive atoms in the lattice, 

current number of a lattice atom along the Z-axis. 

number of atoms along the Z-axis corresponding to 

one period of oscillation. 

momentum of incoming particle. 

energy of incoming particle. 

velocity of incoming particle. 

incoming angle. 

aPA/ - momentum transfer per one half of an oscillation; 

the assumption is that momentum is tranferred to 

N/2 atoms during one half of the period of oscil- 

lation. We suppose also that the energy loss 

during one period of oscillation is much less than 

the initial transverse energy. 

'n - momentum transferred to n-th atom. 

aEX/2 - energy transferred to atoms during one half of 

the period of oscillation. 
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N/2 

Aph/2 = c Pn 
n=l 

Suppose that the motion of a charged particle in the transverse 

direction can be described classically, but with the mass increased 

by a relativistic factor y (2) e Suppose also that the continuum 

planar approximation is valid, and the potential has a parabolic 

shapef3) (see Fig. 2), Then: 

N/2 2nw APA, =n~lA'Sin(-=-+--*nd) E 

where A is an arbitrary constant, and 

AE,/2 
A2N/2 

= m.C 
n=l 

sin2(vend) . 

Let us go to an integral form: 

Av/2w 

Apx/2 = o 3 J sin(F-z)dz , 

A2d2# 

= 2~d J sin'(q-z)dz e 
0 

Then 

APx,2 = A*& = 2p,31 @  

and 

A = 2moP,,+d . 
V 
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AEh/2 = 
z2WP$J?d . 

2Mv 

The number of periods per length AL along the Z-axis is (w*AL)/v, 

and the energy loss per length AL is equal to: 

AE = ,T2U2p6@2d.AL * 
Mv2 

If we designate the energy associated with transverse motion as (11 

E tr = EoQ2 , 

then 

AE -= .rr2W2yd 
AL Etr* (M/mc)c" * (Here mO is the rest 

mass of the particle) 

This corresponds to an exponential loss of transverse energy: 

Et,(L) = EOQ2ae 

where 

A = (M/m,)c2 . 
m2w2yd 
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The frequency of oscillation is given by 

where k is a constant defined by the potential. Let us remark that 

the cooling length A is independent of incoming particle energy. 

In the case of proton penetration in silicon, from Fig- 2, 

E = 4.4Q021 cx volts/meter, 

where x is the distance from the median plane, and 

k- 4.4~1021=l.6e10-1g 2 volt*coulomb/meter - 

So, for 1000 GeV protons 

w N (4.4~1021.1.6*10-1g )% 
1.07~103-1.67-10-27 

= 1.98*1013 set-l- 

Then, 

A- 280(3*10~)~ 
3.142~(l.98~1013]2~l~07*103e5.43~10-10 

= 

= 1.1*10-3 meters. 
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B. Bending a beam by a crystal 

In the case of a bent crystal, the equilibrium line around 

which the particles oscillate does not pass through the median 

plane. Instead of this, it is shifted in the region where the 

electrical field is strong enough to produce a necessary centripetal 

acceleration to the particle, So, the necessary electrical 

intensity should be equal to 

E = m,yv? 
eR 

where R is the bending radius of the crystal, and e is the electron 

charge. 

For the planar channeling of a single charged particle, the 

continuum approximation gives the following potential (2) : 

vb) = 27fnZe'a*f(p/a) . 

Here p is the distance from a plane of atoms, n is the density of 

atoms per unit area, Z is the atomic number of atoms of the crystal 

lattice, a is the Thomas-Fermi screening radiusI and f(p/a) is a 

function defined by the screening function of the atom, The 

corresponding electrical intensity is 

E(p) = 2XnZe2a= $$f (p/a) 1 . 

For Lindhard's (2) screening function, this becomes 

E(p) = 2mnZe2C da 
(b/aj2+ C214 

- 11 . 
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Here C2 = 3. At p = a (this is the critical distance for the 

barrier penetration) 

ECp=a) = - 2anZe2-0.5 . 

For the tungsten Z.= 74, d = 3.16*10-10 meters, and 

E (&)=a) = 0.3491013 volt/meter - 

So, the bending radius for P, = 100 GeV/c 

meters, 
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Figure Captions 

Diagram of the motion of a charged particle through a crystal. 

Continuum potential energy for protons channeled in the (110) 

planes of Si. Figure taken from reference 3. Different solid 

lines correspond to different temperatures of the crystal. 

Dashed line represents the parabolic approximation. 
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Figure 1. 
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Figure 2. 


